Через точку провести прямую перпендикулярную прямой

Альтернативная формула
Прямая, проходящая через точку M1(x1; y1) и перпендикулярная прямой Ax+By+C=0 , представляется уравнением

назначение сервиса . Онлайн-калькулятор предназначен для составления уравнения перпендикулярной прямой (см. также как составить уравнение параллельной прямой).

Пример №1 . Составить уравнение прямой, проходящей через точку (2; -1) и перпендикулярной 4x-9y=3 .
Решение. Данную прямую можно представить уравнением y = 4 /9x – 1 /3 (a = 4 /9). Уравнение искомой прямой есть y+1 = -9/4(x-2) , т.е. 9x+4y-14=0 .

Пример №2 . Решая пример 1 (A=4, B=-9) по формуле (2), найдем 4(y+1)+9(x-2)=0 , т.е. 9x+4y-14=0 .

Пример №3 . Составить уравнение прямой, проходящей через точку (-3, -2) перпендикулярно прямой 2y+1=0 .
Решение. Здесь A=0, B=2. Формула (2) дает -2(x+3)=0, т.е. x+3=0 . Формула (1) неприменима, так как a=0 .

С помощю этого онлайн калькулятора можно построить уравнение прямой, проходящей через данную точку и перпендикуляной данной плоскости. Дается подробное решение с пояснениями. Для построения уравнения прямой введите координаты точки и коэффициенты уравнения плоскости в ячейки и нажимайте на кнопку "Решить".

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Уравнение прямой, проходящей через данную точку и перпендикулярной данной плоскости

Наша цель построить уравнение прямой, проходящей через данную точку M и перпендикулярной к данной плоскости Ax+By+Cz+D=0.

Общее уравнение плоскости имеет вид:

(1)

где n(A,B,C)− называется нормальным вектором плоскости.

Уравнение прямой, проходящей через точку M(x, y, z) и имеющий направляющий вектор q(l, m, n) имеет следующий вид:

(2)

Для того, чтобы прямая (2) была ортогональна плоскости (1), направляющий вектор q(l, m, n) прямой (2) должен быть коллинеарным нормальному вектору n(A,B,C) плоскости (1)(Рис. 1). Следовательно, в качестве направляющего вектора прямой (2) можно взять нормальный вектор плоскости (1) .

Читайте также:  Шрифт ккм для word

Таким образом, уравнение прямой, проходящей через точку M(x, y, z) и ортогональный плоскости (1) имеет следующий вид:

(3)

Пример 1. Построить прямую, проходящую через точку M(5, -4, 4) и перпендикулярной плоскости

Общее уравнение плоскости имеет вид (1), где :

(4)

Подставляя координаты точки M(5, -4, 4) и координаты нормального вектора плоскости (4) в (3), получим:

Задача 1. Через точку А провести плоскость Q, параллельную заданной плоскости Р.

Рис. 4.17 Рис. 4.18

Если плоскость задана пересекающимися прямыми (рис. 4.17), то решение задачи сводится к проведению через точку А пары прямых, параллельных заданным.

Если плоскость задана следами (4.18), то построение может быть выполнено по следующему алгоритму:

1. Через точку А проводим, например, горизонталь искомой плоскости Q, параллельную горизонталям заданной плоскости Р.

2. Через эту горизонталь проводим искомую плоскость параллельно заданной. Фронтальный след QV проводим через фронтальную проекцию п’ фронтального следа горизонтали параллельно следу PV ; горизонтальный след QH – через точку QХ параллельно следу РН.

Задача 2. Через точку А (а, а’) провести плоскость Q, перпендикулярную к прямой (рис. 4.19).

а) Требуется показать искомую плоскость пересекающимися прямыми. В этом случае наиболее просто построить плоскость Q главными линиями — горизонталью и фронталью, проходящими через точку А (а, а’).

Рис. 4.19 Рис. 4.20

б) Требуется показать искомую плоскость следами. Построение может быть выполнено по следующему алгоритму. Через точку А проводим горизонталь плоскости Q перпендикулярно к отрезку ВС. Затем через эту горизонталь проводим искомую плоскость перпендикулярно к прямой ВС. Фронтальный след QV проводим через фронтальную проекцию п’ фронтального следа горизонтали перпендикулярно b’с′; горизонтальный след QH — через точку QХ перпендикулярно к bс.

Задача 3. Через точку А (а, а’) провести плоскость Q, перпендикулярную к заданной плоскости Р и проходящую через точку схода следов QХ на оси X (рис. 4.20).

Читайте также:  Сталкер тень чернобыля виснет что делать

Известно, что плоскость Q будет перпендикулярна к заданной плоскости Р, если она проходит через перпендикуляр к ней или перпендикулярно к линии, лежащей в плоскости Р.

На рис. 4.20 решение задачи выполнено по плану, использующему первое из этих условий:

1. Через заданную точку А проведен перпендикуляр к плоскости Р (am+PH,, a′m′+PV).

2. Через этот перпендикуляр и заданную точку QX проведена искомая плоскость Q. При этом след QН проведен через горизонтальную проекцию т горизонтального следа перпендикуляра и точку QX; след QV — через фронтальную проекцию п′ фронтального следа перпендикуляра и точку QX.

Искомую плоскость можно было бы построить и пересекающимися прямыми, если через точку QX провести какую-либо прямую, имеющую общую точку с перпендикуляром.

Задача 4. Через точку А (а, а’)провести прямую, перпендикулярную к прямой ВС.

Искомый перпендикуляр лежит в плоскости, перпендикулярной к заданной прямой ВС.

Поэтому задача может быть решена по следующему алгоритму:

1. Через точку А проводим плоскость Q, перпендикулярную к прямой ВС.

2. Определяем точку К (k, k’) пересечения прямой ВС с плоскостью Q при помощи горизонтально-проецирующей плоскости S.

3. Соединяем точки А и К.

На эпюре, решая задачу по этому алгоритму, можно плоскость показать двумя пересекающимися главными линиями (h×f) (рис. 4.21) или следами (рис. 4.22).

Рис. 4.21 Рис. 4.22

Задача 5. Построить линию пересечения плоскостей ABC и DEF.

Эту задачу можно решать с использованием задачи на пересечение прямой с плоскостью. На рис. 4.23 показано построение линии пересечения плоскостей, заданных треугольниками ABC и DEF. Прямая MN построена по найденным точкам пересечения сторон DF и EF треугольника DEF с плоскостью треугольника ABC.

Например, чтобы найти точку М пересечения стороны DF с плоскостью ABC, через прямую DF проводят фронтально-проецирующую плоскость Р, которая пересекается с плоскостью треугольника ABC по прямой I II. На пересечении горизонтальных проекций df и 12 получают горизонтальную проекцию m искомой точки М. Затем находят фронтальную проекцию m‘ точки М. Точку N пересечения прямой EF с плоскостью ABC находят, используя фронтально-проецирующую плоскость Q, которая пересекается с плоскостью треугольника ABC по прямой III IV. На пересечении горизонтальных проекций ef и 34 получают горизонтальную проекцию n искомой точки N.

Соединив попарно точки m‘ и n‘, m и n, получают проекции линии пересечения MN плоскостей ABC и DEF.

Видимость частей отрезков плоскостей устанавливается способом конкурирующих точек.

Читайте также:  Что значит неожиданная ошибка в сетевом городе

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10236 – | 7597 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Оцените статью
Добавить комментарий

Adblock detector