Формула пуассона теория вероятности примеры решения

Ряд распределения закона Пуассона имеет вид:

X 1 2 m
P e -λ λe -λ

Назначение сервиса . Онлайн-калькулятор используется для построения Пуассоновского распределения и вычисления всех характеристик ряда: математического ожидания, дисперсии и среднеквадратического отклонения. Отчет с решением оформляется в формате Word .

  • Решение онлайн
  • Видеоинструкция

Числовые характеристики случайной величины Х

Дисперсия распределения Пуассона
D[X] = λ

Пример №1 . Семена содержат 0.1% сорняков. Какова вероятность при случайном отборе 2000 семян обнаружить 5 семян сорняков?
Решение.
Вероятность р мала, а число n велико. np = 2 5 e -5 /5! = 0.03609
Математическое ожидание: M[X] = λ = 2
Дисперсия: D[X] = λ = 2

Пример №2 . Среди семян ржи имеется 0.4% семян сорняков. Составить закон распределения числа сорняков при случайном отборе 5000 семян. Найти математическое ожидание и дисперсию этой случайной величины.
Решение. Математическое ожидание: M[X] = λ = 0.004*5000 = 20. Дисперсия: D[X] = λ = 20
Закон распределения:

X 1 2 m
P e -20 20e -20 200e -20 20 m e -20 /m!

Пример №3 . На телефонной станции неправильное соединение происходит с вероятностью 1/200. Найдите вероятность того, что среди 200 соединений произойдет:
а) ровно одно неправильное соединение;
б) меньше чем три неправильных соединения;
в) больше чем два неправильных соединения.
Решение. По условию задачи вероятность события мала, поэтому используем формулу Пуассона (15).
а) Задано: n = 200, p = 1/200, k = 1. Найдем P200(1).
Получаем: . Тогда P200(1) ≈ e -1 ≈ 0,3679.
б) Задано: n = 200, p = 1/200, k 2. Найдем P200(k > 2).
Эту задачу можно решить проще: найти вероятность противоположного события, так как в этом случае нужно вычислить меньше слагаемых. Принимая во внимание предыдущий случай, имеем

Рассмотрим случай, когда n является достаточно большим, а p — достаточно малым; положим np = a, где a — некоторое число. В этом случае искомая вероятность определяется формулой Пуассона:

Читайте также:  Трансформатор тса 270 1 схема подключения

Пример №4 . Вероятность того, что деталь бракованная, равна 0.005. проверяется 400 деталей. Укажите формулу вычисления вероятности того, что больше 3 деталей оказались с браком.

Пример №5 . Вероятность появления бракованных деталей при их массовом производстве равна p. определить вероятность того, что в партии из N деталей содержится а) ровно три детали; б) не более трех бракованных деталей.
p=0,001; N = 4500
Решение.
Вероятность р мала, а число n велико. np = 4.5 – λ = e -4.5 = 0.01111
P(1) = λe -λ = 4.5e -4.5 = 0.04999

Тогда вероятность того, что в партии из N деталей содержится ровно три детали, равна:

Тогда вероятность того, что в партии из N деталей содержится не более трех бракованных деталей:
P(x Пример №6 . Автоматическая телефонная станция получает в среднем за час N вызовов. Определить вероятность того, что за данную минуту она получит: а) ровно два вызова; б) более двух вызовов.
N = 18
Решение.
За одну минуту АТС в среднем получает λ = 18/60 мин. = 0,3
Считая, что случайное число X вызовов, поступивших на АТС за одну минуту,
подчиняется закону Пуассона, по формуле найдем искомую вероятность

Найдем ряд распределения X.
Здесь λ = 0.3
P(0) = e – λ = e -0.3 = 0.7408
P(1) = λe -λ = 0.3e -0.3 = 0.2222

Вероятность того, что за данную минуту она получит ровно два вызова:
P(2) = 0,03334
Вероятность того, что за данную минуту она получит более двух вызовов:
P(x>2) = 1 – 0,7408 – 0,2222 – 0,03334 = 0,00366

Пример №7 . Рассматриваются два элемента, работающих независимо друг от друга. Продолжительность времени безотказной работы имеет показательное распределение с параметром λ1 = 0,02 для первого элемента и λ2 = 0,05 для второго элемента. Найти вероятность того, что за 10 часов: а) оба элемента будут работать безотказно; б) только Вероятность того, что за 10 часов элемент №1 не выйдет из строя:
Рещение.
P1(0) = e -λ1*t = e -0.02*10 = 0,8187

Вероятность того, что за 10 часов элемент №2 не выйдет из строя:
P2(0) = e -λ2*t = e -0.05*10 = 0,6065

Читайте также:  Что значит эпсилон в физике

а) оба элемента будут работать безотказно;
P(2) = P1(0)*P2(0) = 0,8187*0,6065 = 0,4966
б) только один элемент выйдет из строя.
P(1) = P1(0)*(1-P2(0)) + (1-P1(0))*P2(0) = 0.8187*(1-0.6065) + (1-0.8187)*0.6065 = 0.4321

Пример №7 . Производство даёт 1% брака. Какова вероятность того, что из взятых на исследование 1100 изделий выбраковано будет не больше 17?
Примечание: поскольку здесь n*p =1100*0.01=11 > 10, то необходимо использовать теорему Лапласа.

1.9. Формула Пуассона

При большом числе испытаний $n$ и малой вероятности $р$ формулой Бернулли пользоваться неудобно, например, $0.97^<999>$ вычислить трудно. В этом случае для вычисления вероятности того, что в $n$ испытаниях ($n$ – велико) событие произойдет $k$ раз, используют формулу Пуассона:

Здесь $lambda=n cdot p$ обозначает среднее число появлений события в $n$ испытаниях.

Эта формула дает удовлетворительное приближение для $p le 0,1$ и $np le 10$. Cобытия, для которых применима формула Пуассона, называют редкими, так как вероятность их осуществления очень мала (обычно порядка 0,001-0,0001).

При больших $np$ рекомендуется применять формулы Лапласа (Муавра-Лапласа).

Примеры решений на формулу Пуассона

Пример. Устройство состоит из 1000 элементов, работающих независимо один от другого. Вероятность отказа любого элемента в течении времени Т равна 0,002. Найти вероятность того, что за время Т откажут ровно три элемента.

Решение. По условию дано: $n=1000$, $p=0,002$, $lambda=np=2$, $k=3$.

Искомая вероятность после подстановки в формулу:

Пример. Завод отправил на базу 500 изделий. Вероятность повреждения изделия в пути 0,004. Найти вероятность того, что в пути повреждено меньше трех изделий.

Решение. По условию дано: $n=500$, $p=0,004$, $lambda=np=2$.

По теореме сложения вероятностей получаем вероятность того, что повреждено меньше 3 изделий, то есть 0, 1 или 2 изделия:

Пример. Магазин получил 1000 бутылок минеральной воды. Вероятность того, что при перевозке бутылка окажется разбитой, равна 0,003. Найти вероятность того, что магазин получит более двух разбитых бутылок.

Читайте также:  1С обработка отмены проведения

Решение. По условию дано: $n=1000$, $p=0,003$, $lambda=np=3$.

Чтобы найти вероятность $P_<1000>(kgt 2)$ того, что магазин получит более двух разбитых бутылок, используем переход к противоположному событию (разбито не более 2 бутылок, то есть 0, 1 или 2):

$$ P_<1000>(kgt 2) = 1 – P_<1000>(kle 2) = 1 – (P_<1000>(0)+P_<1000>(1)+P_<1000>(2)) = \=1 – left(frac<3^0><0!>cdot e^ <-3>+ frac<3^1><1!>cdot e^ <-3>+ frac<3^2><2!>cdot e^ <-3>
ight) =\ =1 – left(1 + 3 + 9/2
ight)cdot e^ <-3>approx 0,568. $$

Видео о решении задач с помощью формулы Пуассона

Подробную статью о формуле с примерами, онлайн калькулятор и расчетный файл к видеоролику вы найдете тут.

Формула Пуассона

Формула Бернулли удобна для вычислений лишь при сравнительно небольшом числе испытаний . При больших значениях пользоваться этой формулой неудобно. Чаще всего в этих случаях используют формулу Пуассона. Эта формула определяется теоремой Пуассона.

Теорема. Если вероятность наступления события в каждом испытании постоянна и мала, а число независимых испытаний достаточно велико, то вероятность наступления события ровно раз приближенно равна

,(3.4)

Доказательство. Пусть даны вероятность наступления события в одном испытании и число независимых испытаний . Обозначим . Откуда . Подставим это выражение в формулу Бернулли:

При достаточно большом !!n,, и сравнительно небольшом !!m,, все скобки, за исключением предпоследней, можно принять равными единице, т.е.

Учитывая то, что достаточно велико, правую часть этого выражения можно рассмотреть при , т.е. найти предел

(3.5)

Пример. На предприятии изготовлено и отправлено заказчику 100000 бутылок пива. Вероятность того, что бутылка может оказаться битой, равна 0,0001. Найти вероятность того, что в отправленной партии будет ровно три и ровно пять битых бутылок.

Решение. Дано: n = 100000, p = 0,0001, m = 3 (m = 5).

Оцените статью
Добавить комментарий

Adblock detector