Формулы перехода от синуса к косинусу

Определения синуса, косинуса, тангенса и котангенса.

Знаки тригонометрических функций:

Значения тригонометрических функций

Формулы синуса, косинуса, тангенса и котангенса угла (–α):

sin (–α) = – sin α
cos (–α) = cos α
tg (–α) = – tg α
ctg (–α) = – ctg α

Все формулы приведения можно получить, пользуясь следующими правилами:
1. В правой части формулы ставится тот знак, который имеет левая часть при условии

2. Если в левой части формулы угол равен /2 ± или 3/2±, то синус заменяется на косинус, тангенс на котангенс и наоборот, если угол равен ± или 2, то замены не происходит.

Формулы двойного угла.

Формулы перехода от суммы к произведению.

Формулы перехода от произведения к сумме.

Формулы понижения степени.

Преобразование выражения a·cos + b·sin путем введения вспомогательного аргумента.

,

где вспомогательный аргумент определяется из условий

Основные формулы тригонометрии – это формулы, устанавливающие связи между основными тригонометрическими функциями. Синус, косинус, тангенс и котангенс связаны между собой множеством соотношений. Ниже приведем основные тригонометрические формулы, а для удобства сгруппируем их по назначению. С использованием данных формул можно решить практически любую задачу из стандартного курса тригонометрии. Сразу отметим, что ниже приведены лишь сами формулы, а не их вывод, которому будут посвящены отдельные статьи.

Основные тождества тригонометрии

Тригонометрические тождества дают связь между синусом, косинусом, тангенсом и котангенсом одного угла, позволяя выразить одну функцию через другую.

sin 2 a + cos 2 a = 1 t g α = sin α cos α , c t g α = cos α sin α t g α · c t g α = 1 t g 2 α + 1 = 1 cos 2 α , c t g 2 α + 1 = 1 sin 2 α

Эти тождества напрямую вытекают из определений единичной окружности, синуса (sin), косинуса (cos), тангенса (tg) и котангенса (ctg).

Формулы приведения

Формулы приведения позволяют переходить от работы с произвольными и сколь угодно большими углами к работе с углами в пределах от 0 до 90 градусов.

sin α + 2 π z = sin α , cos α + 2 π z = cos α t g α + 2 π z = t g α , c t g α + 2 π z = c t g α sin – α + 2 π z = – sin α , cos – α + 2 π z = cos α t g – α + 2 π z = – t g α , c t g – α + 2 π z = – c t g α sin π 2 + α + 2 π z = cos α , cos π 2 + α + 2 π z = – sin α t g π 2 + α + 2 π z = – c t g α , c t g π 2 + α + 2 π z = – t g α sin π 2 – α + 2 π z = cos α , cos π 2 – α + 2 π z = sin α t g π 2 – α + 2 π z = c t g α , c t g π 2 – α + 2 π z = t g α sin π + α + 2 π z = – sin α , cos π + α + 2 π z = – cos α t g π + α + 2 π z = t g α , c t g π + α + 2 π z = c t g α sin π – α + 2 π z = sin α , cos π – α + 2 π z = – cos α t g π – α + 2 π z = – t g α , c t g π – α + 2 π z = – c t g α sin 3 π 2 + α + 2 π z = – cos α , cos 3 π 2 + α + 2 π z = sin α t g 3 π 2 + α + 2 π z = – c t g α , c t g 3 π 2 + α + 2 π z = – t g α sin 3 π 2 – α + 2 π z = – cos α , cos 3 π 2 – α + 2 π z = – sin α t g 3 π 2 – α + 2 π z = c t g α , c t g 3 π 2 – α + 2 π z = t g α

Читайте также:  1С вызвать общую команду программно

Формулы приведения являются следствием периодичности тригонометрических функций.

Тригонометрические формулы сложения

Формулы сложения в тригонометрии позволяют выразить тригонометрическую функцию суммы или разности углов через тригонометрические функции этих углов.

Тригонометрические формулы сложения

sin α ± β = sin α · cos β ± cos α · sin β cos α + β = cos α · cos β – sin α · sin β cos α – β = cos α · cos β + sin α · sin β t g α ± β = t g α ± t g β 1 ± t g α · t g β c t g α ± β = – 1 ± c t g α · c t g β c t g α ± c t g β

На основе формул сложения выводятся тригонометрические формулы кратного угла.

Формулы кратного угла: двойного, тройного и т.д.

sin 2 α = 2 · sin α · cos α cos 2 α = cos 2 α – sin 2 α , cos 2 α = 1 – 2 sin 2 α , cos 2 α = 2 cos 2 α – 1 t g 2 α = 2 · t g α 1 – t g 2 α с t g 2 α = с t g 2 α – 1 2 · с t g α sin 3 α = 3 sin α · cos 2 α – sin 3 α , sin 3 α = 3 sin α – 4 sin 3 α cos 3 α = cos 3 α – 3 sin 2 α · cos α , cos 3 α = – 3 cos α + 4 cos 3 α t g 3 α = 3 t g α – t g 3 α 1 – 3 t g 2 α c t g 3 α = c t g 3 α – 3 c t g α 3 c t g 2 α – 1

Формулы половинного угла

Формулы половинного угла в тригонометрии являются следствием формул двойного угла и выражают соотношения между основными функциями половинного угла и косинусом целого угла.

Формулы половинного угла

sin 2 α 2 = 1 – cos α 2 cos 2 α 2 = 1 + cos α 2 t g 2 α 2 = 1 – cos α 1 + cos α c t g 2 α 2 = 1 + cos α 1 – cos α

Формулы понижения степени

sin 2 α = 1 – cos 2 α 2 cos 2 α = 1 + cos 2 α 2 sin 3 α = 3 sin α – sin 3 α 4 cos 3 α = 3 cos α + cos 3 α 4 sin 4 α = 3 – 4 cos 2 α + cos 4 α 8 cos 4 α = 3 + 4 cos 2 α + cos 4 α 8

Читайте также:  Топ 10 сайтов даркнета

Часто при расчетах действовать с громоздктми степенями неудобно. Формулы понижения степени позволяют понизить степень тригонометрической функции со сколь угодно большой до первой. Приведем их общий вид:

Общий вид формул понижения степени

sin n α = C n 2 n 2 n + 1 2 n – 1 ∑ k = 0 n 2 – 1 ( – 1 ) n 2 – k · C k n · cos ( ( n – 2 k ) α ) cos n α = C n 2 n 2 n + 1 2 n – 1 ∑ k = 0 n 2 – 1 C k n · cos ( ( n – 2 k ) α )

sin n α = 1 2 n – 1 ∑ k = 0 n – 1 2 ( – 1 ) n – 1 2 – k · C k n · sin ( ( n – 2 k ) α ) cos n α = 1 2 n – 1 ∑ k = 0 n – 1 2 C k n · cos ( ( n – 2 k ) α )

Сумма и разность тригонометрических функций

Разность и сумму тригонометрических функций можно представить в виде произведения. Разложение на множители разностей синусов и косинусов очень удобно применять при решении тригонометрических уравнений и упрощении выражений.

Сумма и разность тригонометрических функций

sin α + sin β = 2 sin α + β 2 · cos α – β 2 sin α – sin β = 2 sin α – β 2 · cos α + β 2 cos α + cos β = 2 cos α + β 2 · cos α – β 2 cos α – cos β = – 2 sin α + β 2 · sin α – β 2 , cos α – cos β = 2 sin α + β 2 · sin β – α 2

Произведение тригонометрических функций

Если формулы суммы и разности функций позволяют перейти к их произведению, то формулы произведения тригонометрических функций осуществляют обратный переход – от произведения к сумме. Рассматриваются формулы произведения синусов, косинусов и синуса на косинус.

Формулы произведения тригонометрических функций

sin α · sin β = 1 2 · ( cos ( α – β ) – cos ( α + β ) ) cos α · cos β = 1 2 · ( cos ( α – β ) + cos ( α + β ) ) sin α · cos β = 1 2 · ( sin ( α – β ) + sin ( α + β ) )

Универсальная тригонометрическая подстановка

Все основные тригонометрические функции – синус, косинус, тангенс и котангенс, – могут быть выражены через тангенс половинного угла.

Универсальная тригонометрическая подстановка

sin α = 2 t g α 2 1 + t g 2 α 2 cos α = 1 – t g 2 α 2 1 + t g 2 α 2 t g α = 2 t g α 2 1 – t g 2 α 2 c t g α = 1 – t g 2 α 2 2 t g α 2

Тригонометрические формулы

Тригонометрические формулы основаны на тригонометрических функциях (ТФ) углов.

Угол – есть фигура, образованная двумя двумя лучами $OA$ и $OB$ (стороны угла), исходящими из одной точки $O$ (вершина угла).

Читайте также:  Файл слишком велик воспользуйтесь другим текстовым редактором

Мерой угла служит величина поворота вокруг вершины $O$, переводящего луч $OA$ в положение $OB$.

Распространены две системы измерения углов: градусная и радианная.

В градусной системе измерения углов за единицу принимается поворот луча на $1/360$ часть одного полного оборота — градус (обозначение $<>^circ $). Полный оборот составляет, таким образом, $360<>^circ $. Градус делится на 60 минут (обозначение $’$); минута — на 60 секунд (обозначение $”$).

В радианной системе измерения углов за единицу измерения принимается острый угол ($MON$), под которым видна из центра окружности её дуга $MN$, равная радиусу ($mathoplimits^ <cup >=OM$). Такой угол называется радианом.

Теперь допустим, что угол $MON$ — произвольный. Тогда радианная мера этого угла равна отношению длины дуги $mathoplimits^ <cup >$, описанной произвольным радиусом из центра $O$ и заключенной между сторонами угла, к радиусу $OM$ этой дуги.

Попробуй обратиться за помощью к преподавателям

Мера угла считается положительной, если вращение луча (радиуса $OM$) совершается против часовой стрелки, и отрицательной — в противном случае.

Переход от одного измерения к другому осуществляется по формулам: $alpha <>^circ =frac<180> <pi >cdot alpha$ или $alpha =frac<pi > <180>cdot alpha <>^circ $.

Полезно помнить следующую таблицу градусной и радианной меры некоторых часто встречающихся углов:

Определение синуса, косинуса и тангенса, знаки синуса, косинуса и тангенса

ТФ острого угла можно определить из прямоугольного треугольника:

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Из этой таблицы видно, как через синус и косинус можно выразить все остальные функции: $tgA=frac<sin A> <cos A>$; $ctgA=frac<cos A> <sin A>$; $scA=frac<1> <cos A>$; $csc A=frac<1> <sin A>$.

Полезно помнить значения основных ТФ для часто встречающихся значений углов:

ТФ приписывается определенный знак в зависимости от того, в какой четверти тригонометрического круга лежит подвижный радиус $OC$, образующий угол с неподвижным радиусом $OA$:

Обратные тригонометрические функции (ОТФ)

ОТФ называются угловые величины $y$ (в радианах), определяемые следующими равенствами и указываемые с прописной буквы:

$y=Arcsin x$, если $x=sin y$ — арксинус;

$y=Arccos x$, если $x=cos y$ — арккосинус;

$y=Arctgx$, если $x=tgy$ — арктангенс;

$y=Arcctgx$, если $x=ctgy$ — арккотангенс.

ОТФ многозначны. Поэтому из всего множества значений каждой из них выделяют главные, а наименования указывают со строчной буквы:

Оцените статью
Добавить комментарий

Adblock detector