Таблица двоичных восьмеричных и шестнадцатеричных чисел

Двоичная система счисления

Для представления чисел в микропроцессоре используется двоичная система счисления .
При этом любой цифровой сигнал может иметь два устойчивых состояния: «высокий уровень» и «низкий уровень». В двоичной системе счисления для изображения любого числа используются две цифры, соответственно: 0 и 1. Произвольное число x=anan-1..a1a,a-1a-2…a-m запишется в двоичной системе счисления как

где ai — двоичные цифры (0 или 1).

Восьмеричная система счисления

В восьмеричной системе счисления базисными цифрами являются цифры от 0 до 7. 8 единиц младшего разряда объединяются в единицу старшего.

Шестнадцатеричная система счисления

В шестнадцатеричной системе счисления базисными цифрами являются цифры от 0 до 15 включительно. Для обозначения базисных цифр больше 9 одним символом кроме арабских цифр 0…9 в шестнадцатеричной системе счисления используются буквы латинского алфавита:

Например, число 17510 в шестнадцатеричной системе счисления запишется как AF16. Действительно,

10·16 1 +15·16 0 =160+15=175

В таблице представлены числа от 0 до 16 в десятичной, двоичной, восьмеричной и шестнадцатеричной системах счисления.

Десятичная Двоичная Восьмеричная Шестнадцатеричная
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10

Двоично-восьмеричные и двоично-шестнадцатеричные преобразования

Двоичная система счисления удобна для выполнения арифметических действий аппаратными средствами микропроцессора, но неудобна для восприятия человеком, поскольку требует большого количества разрядов. Поэтому в вычислительной технике помимо двоичной системы счисления широкое применение нашли восьмеричная и шестнадцатеричная системы счисления для более компактного представления чисел.

Три разряда восьмеричной системы счисления реализуют все возможные комбинации восьмеричных цифр в двоичной системе счисления: от 0 (000) до 7(111). Чтобы преобразовать двоичное число в восьмеричное, нужно объединить двоичные цифры в группы по 3 разряда (триады) в две стороны, начиная от разделителя целой и дробной части. При необходимости слева от исходного числа нужно добавить незначащие нули. Если число содержит дробную часть, то справа от него тоже можно добавить незначащие нули до заполнения всех триад. Затем каждая триада заменяется восьмеричной цифрой.

Читайте также:  Фирма рога и копыта продает компьютерную технику

Пример: Преобразовать число 1101110,012 в восьмеричную систему счисления.

Объединяем двоичные цифры в триады справа налево. Получаем

Чтобы перевести число из восьмеричной системы в двоичную, нужно каждую восьмеричную цифру записать ее двоичным кодом:

Четыре разряда шестнадцатеричной системы счисления реализуют все возможные комбинации шестнадцатеричных цифр в двоичной системе счисления: от 0 (0000) до F(1111). Чтобы преобразовать двоичное число в шестнадцатеричное, нужно объединить двоичные цифры в группы по 4 разряда (тетрады) в две стороны, начиная от разделителя целой и дробной части. При необходимости слева от исходного числа нужно добавить незначащие нули. Если число содержит дробную часть, то справа от нее тоже нужно добавить незначащие нули до заполнения всех тетрад. Затем каждая тетрада заменяется шестнадцатеричной цифрой.

Пример: Преобразовать число 1101110,112 в шестнадцатеричную систему счисления.

Объединяем двоичные цифры в тетрады справа налево. Получаем

Чтобы перевести число из шестнадцатеричной системы в двоичную, нужно каждую шестнадцатеричную цифру записать ее двоичным кодом:

Данные системы счисления относятся к позиционным.

Двоичная система счисления

Эта система счисления свое название получила в результате того, что содержит в своем основании всего две цифры – $0$ и $1$. Таким образом, число $2$ и его степени $2, 4, 8$ и т.д. играют особую роль. Самая правая цифра числа показывает число единиц, следующая – число двоек, следующая – число четверок и т.д.

В двоичной системе счисления для формирования числа используются всего две цифры: $0$ и $1$. Пределом разряда является $1$, и как только при счете разряд достигает своего максимального значения, он обнуляется, а при этом образуется новый разряд. Ниже в таблице приведены соответствия двоичных и десятичных чисел.

Используя двоичную систему счисления, можно закодировать любое натуральное число, представляя его как последовательность нулей и единиц. В двоичном виде можно представить не только числа, но и любую другую информацию: тексты, изображения, фильмы и аудиозаписи. Инженеров двоичное кодирование привлекает тем, что оно легко реализуется технически.

Читайте также:  1С программно изменить реквизит справочника

Попробуй обратиться за помощью к преподавателям

Именно на принципе двоичного кодирования работает вся вычислительная техника: $1$ означает, что электрический сигнал прошел, а $0$ – сигнал отсутствует. Наглядно это можно рассмотреть на примере перфокарт, которые использовались в вычислительных машинах первых поколений. Как уже упоминалось выше: в перфокартах пробивались отверстия в соответствующих рядах и столбцах цифр, таким образом, кодировались и сохранялись программы, поскольку жестких дисков, и тем более оптических, в те времена не было. Затем программы считывались при помощи электрического сигнала, который, если проходил в отверстие, значит, это был код $1$ и, наоборот, если не проходил сигнал – это был код $0$. Аналогичным способом в настоящее время записываются оптические диски при помощи лазерного луча, прожигающего невидимые микроотверстия на поверхности специальных дисков. Принцип считывания закодированной информации с диска аналогичен предыдущему.

Из всего вышесказанного можно сделать вывод, что компьютер «понимает» всего два числа: $0$ и $1$. И именно один двоичный разряд и является минимальной единицей измерения памяти компьютера, которая называется «бит», т.е. бит – это ячейка памяти компьютера, в которую можно записать $1$ или $0$.

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Другой единицей измерения информации является байт.

Байт – это восемь подряд расположенных битов. Общее количество комбинаций двоичных значений в байте равно $28 = 256$.

$1 байт = 8 битам$; $1 Кб = 210 байта = 1024 байта$; $1 Мб = 210 Кбайт = 1024 Кбайта$; $1 Гб = 210 байта = 1024 килобайта$; $1 Тб = 210 гигабайта = 1024 гигабайта$.

Достоинства двоичной системы счисления заключаются в ее простоте, благодаря которой она широко используется в технике. Устройства, работающие в двух состояниях (включено, выключено), наиболее помехоустойчивы, и, как следствие, более надежны.

Восьмеричная система счисления

В основе данной системы счисления находятся $8$ цифр: от $0$ до $7$. Цифра $1$, указанная в самом младшем разряде, означает, как и в десятичном числе просто $1$. Та же цифра $1$ в следующем разряде означает $8$, в следующем $64$ и т.д. Число $100$ (восьмеричное) – это число $64$ (десятичное). Чтобы перевести в двоичную систему, например, число $611$ (восьмеричное), необходимо каждую цифру числа заменить эквивалентной тройкой двоичных чисел. Для перевода многозначного двоичного числа в восьмеричную систему счисления необходимо разбить его на тройки по правую сторону и по левую и заменить каждую тройку соответствующей восьмеричной цифрой.

Читайте также:  Тариф иркутск супер мтс 052016

В таблице приведены соответствия чисел в восьмеричной и десятичной системах.

В технике данная система находит широкое применение, так с помощью нее можно компактно записывать двоичные числа.

Шестнадцатеричная система счисления

Запись числа в восьмеричной системе счисления достаточно компактная, но еще компактнее она выглядит в шестнадцатеричной системе. В основу данной системы входят цифры от $0$ до $9$ и первые буквы латинского алфавита: $A$, $B$, $C$, $D$, $E$, $F$.

Цифра $1$, записанная в самом младшем разряде, означает просо единицу. Цифра $1$ в следующем разряде – $16$ (десятичное число), в следующем – $256$ и т.д. Цифра, обозначенная латинской буквой $F$, расположенная в самом младшем разряде означает $15$ ( десятичное число).

В таблице приведены соответствия чисел в шестнадцатеричной и десятичной системах.

Широко используется в низкоуровневом программировании и компьютерной документации, поскольку в современных компьютерах минимальной единицей памяти является $8$-битный байт, значения которого удобно записывать двумя шестнадцатеричными цифрами. Такое использование началось с системы $IBM/360$, где вся документация использовала шестнадцатеричную систему, в то время как в документации других компьютерных систем того времени (даже с $8$-битными символами, как, например, $PDP-11$ или $БЭСМ-6$) использовали восьмеричную систему.

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

Таблица соответствия десятеричного от 1 до 255 (decimal), двоичного (binary) и шестнадцатеричного (hexadecimal) представлений чисел.

Оцените статью
Добавить комментарий

Adblock detector