Написать уравнение прямой, отсекающей на координатных осях Ox и Oy отрезки a = 3 и b = 4.
В уравнение прямой в отрезках на осях
подставим a = 3 и b = 4. Получим искомое уравнение в виде
Продолжаем изучение раздела «Уравнение прямой на плоскости» и в этой статье разберем тему «Уравнение прямой в отрезках». Последовательно рассмотрим вид уравнения прямой в отрезках, построение прямой линии, которая задается этим уравнением, переход от общего уравнения прямой к уравнению прямой в отрезках. Все это будет сопровождаться примерами и разбором решения задач.
Уравнение прямой в отрезках – описание и примеры
Пусть на плоскости расположена прямоугольная система координат O x y .
Прямая линия на плоскости в декартовой системе координат O x y задается уравнением вида x a + y b = 1 , где a и b – это некоторые действительные числа, отличные от нуля, величины которых равны длинам отрезков, отсекаемых прямой линией на осях O x и O y . Длины отрезков считаются от начала координат.
Как мы знаем, координаты любой из точек, принадлежащих прямой линии, заданной уравнением прямой, удовлетворяют уравнению этой прямой. Точки a , 0 и 0 , b принадлежат данной прямой линии, так как a a + 0 b = 1 ⇔ 1 ≡ 1 и 0 a + b b = 1 ⇔ 1 ≡ 1 . Точки a , 0 и b , 0 расположены на осях координат O x и O y и удалены от начала координат на a и b единиц. Направление, в котором нужно откладывать длину отрезка, определяется знаком, который стоит перед числами a и b . Знак « – » обозначает, что длину отрезка необходимо откладывать в отрицательном направлении координатной оси.
Поясним все вышесказанное, расположив прямые относительно фиксированной декартовой системы координат O x y на схематическом чертеже. Уравнение прямой в отрезках x a + y b = 1 применяется для построения прямой линии в декартовой системе координат O x y . Для этого нам необходимо отметить на осях точки a , 0 и b , 0 , а затем соединить эти точки линией при помощи линейки.
На чертеже показаны случаи, когда числа a и b имеют различные знаки, и, следовательно, длины отрезков откладываются в разных направлениях координатных осей.
Прямая линия задана уравнением прямой в отрезках вида x 3 + y – 5 2 = 1 . Необходимо построить эту прямую на плоскости в декартовой системе координат O x y .
Решение
Используя уравнение прямой в отрезках, определим точки, через которые проходит прямая линия. Это 3 , 0 , 0 , – 5 2 . Отметим их и проведем линию.
Приведение общего уравнения прямой к уравнению прямой в отрезках
Переход от заданного уравнения прямой к уравнению прямой в отрезках облегчает нам решение различных задач. Имея полное общее уравнение прямой, мы можем получить уравнение прямой в отрезках.
Полное общее уравнение прямой линии на плоскости имеет вид A x + B y + C = 0 , где А , В и C не равны нулю. Мы переносим число C в правую часть равенства, делим обе части полученного равенства на – С . При этом, коэффициенты при x и y мы отправляем в знаменатели:
A x + B y + C = 0 ⇔ A x + B y = – C ⇔ ⇔ A – C x + B – C y = 1 ⇔ x – C A + y – C B = 1
Для осуществления последнего перехода мы воспользовались равенством p q = 1 q p , p ≠ 0 , q ≠ 0 .
В результате, мы осуществили переход от общего уравнения прямой A x + B y + C = 0 к уравнению прямой в отрезках x a + y b = 1 , где a = – C A , b = – C B .
Разберем следующий пример.
Осуществим переход к уравнению прямой в отрезках, имея общее уравнение прямой x – 7 y + 1 2 = 0 .
Решение
Переносим одну вторую в правую часть равенства x – 7 y + 1 2 = 0 ⇔ x – 7 y = – 1 2 .
Делим обе части равенства на – 1 2 : x – 7 y = – 1 2 ⇔ 1 – 1 2 x – 7 – 1 2 y = 1 .
Преобразуем полученное равенство к нужному виду: 1 – 1 2 x – 7 – 1 2 y = 1 ⇔ x – 1 2 + y 1 14 = 1 .
Мы получили уравнение прямой в отрезках.
Ответ: x – 1 2 + y 1 14 = 1
В тех случаях, когда прямая линия задана каноническим или параметрическим уравнением прямой на плоскости, то сначала мы переходим к общему уравнению прямой, а затем уже к уравнению прямой в отрезках.
Перейти от уравнения прямой в отрезках и общему уравнению прямой осуществляется просто: мы переносим единицу из правой части уравнения прямой в отрезках вида x a + y b = 1 в левую часть с противоположным знаком, выделяем коэффициенты перед неизвестными x и y .
x a + y b = 1 ⇔ x a + y b – 1 = 0 ⇔ 1 a · x + 1 b · y – 1 = 0
Получаем общее уравнение прямой, от которого можно перейти к любому другому виду уравнения прямой на плоскости. Процесс перехода мы подробно разобрали в теме «Приведение общего уравнения прямой к другим видам уравнения прямой».
Уравнение прямой в отрезках имеет вид x 2 3 + y – 12 = 1 . Необходимо написать общее уравнение прямой на плоскости.
Решение
Действует по заранее описанному алгоритму:
x 2 3 + y – 12 = 1 ⇔ 1 2 3 · x + 1 – 12 · y – 1 = 0 ⇔ ⇔ 3 2 · x – 1 12 · y – 1 = 0
Ответ: 3 2 · x – 1 12 · y – 1 = 0
Уравнением прямой в отрезках называется уравнение вида
,
где из общего уравнения прямой,
из общего уравнения прямой.
Числа a и b имеют весьма простой геометрический смысл. Это величины отрезков, которые прямая отсекает на координатных осях, считая каждый от начала координат (рисунок внизу).
Как получить уравнение прямой в отрезках из общего уравнения прямой? Пусть дано общее уравнение прямой на плоскости
при условии, что ни один из коэффициентов A, B, C не равен нулю.
Перенесём свободный член C в правую часть уравнения и получим:
.
Поделим обе части уравнения на -C и имеем:
.
,
,
то есть уравнение прямой в отрезках.
Пример 1. Прямая на плоскости задана общим уравнением . Составить для этой прямой уравнение в отрезках и построить прямую.
.
Следовательно, для данной прямой уравнение в отрезках будет следующим:
.
Мы получим эту прямую на чертеже, если отложим на координатных осях Ox и Oy отрезки, величины которых соответственно равны и
и соединим их концы.
Пример 2. Прямая на плоскости задана общим уравнением . Составить для этой прямой уравнение в отрезках и построить прямую.
.
Следовательно, для данной прямой уравнение в отрезках будет следующим:
.
Мы получим эту прямую на чертеже, если отложим на координатных осях Ox и Oy отрезки, величины которых соответственно равны и
и соединим их концы.
Самые наблюдательные, возможно, уже начали устанавливать закономерность, по которой отрезки имеют положительный либо отрицательный знак в зависимости от знаков коэффициентов.
Пример 3. Прямая на плоскости задана уравнением в отрезках . Установить, принадлежит ли этой прямой точка
.
Решение. Как и в другие виды уравнения прямой, в уравнение прямой в отрезках подставляем координаты точки. Получаем верное равенство:
.
Следовательно, заданная точка принадлежит прямой.